On the night of November 28, 1659, a Dutch astronomer named Christiaan Huygens aimed toward the sky a 22-foot telescope of his own invention, peered through its compound eyepiece, and drew the first known illustration---the first map, really---of Mars. His sketch, though crude, captured a dark, distinctive surface feature. Today, astronomers know it as Syrtis Major.
And they're about to get to know it a lot better.
At Syrtis Major's northeastern edge you’ll find one of the most intriguing crops of geology ever observed on another planet. Its terrain---sandwiched between a large volcano and one of the biggest, oldest craters on Mars---preserves a chapter of the planet’s early history marked by warm, watery environments where microbial life might have flourished. Now, 358 years after Hyugens first described Syrtis Major’s outlines, planetary geologists have charted its fascinating northeasterly province at higher resolution, and in finer geological detail, than ever before.
“People have explored the mineralogy and geology of the larger area before, but nobody has put down the magnifying glass and looked at this one region up close,” says Michael Bramble, the planetary geologist at Brown University who led the mapping effort.
His team’s map, which appears in the latest issue of the planetary science journal Icarus, recounts the history of Northeast Syrtis. “It’s a big step for the planetary science community," says UT Austin geoscientist Tim Goudge. "It helps us understand what happened here, why it’s unique, why it’s so mineralogically diverse.” That’s a big endorsement: Not only is Goudge unaffiliated with Bramble’s project, he’s something of a rival.
See, Northeast Syrtis is one of the two most promising landing sites currently under consideration for NASA’s Mars 2020 rover. The competing landing site is Jezero crater, home to an ancient lake whose sediments might now carry traces of past life---and Goudge is its lead mapper.
Planetary scientists have been deliberating over where to land NASA’s rover for several years now. And with good reason: The site's composition will have a major impact on the agency's research. NASA’s next rover, which is slated to launch in 2020, will investigate Mars’ geological history, evalsuate the planet’s past habitability, and hunt for signs of ancient life. Crucially, it will also be the first rover to cache samples of Martian soil and rock---samples which NASA hopes to retrieve on a future mission and analyze here on Earth.
NASA is getting closer to a verdict. Northeast Syrtis and Jezero rose to the top of the pack just in February, when some 200 planetary scientists convened at a workshop in Monrovia, California to trim the list of recommended candidates from eight to three. (Columbia Hills, a site previously explored by NASA’s Spirit Rover, also made the cut, though the other sites seem more promising).
Though only one bears its name, both sites reside in the northeasterly reaches of Syrtis Major. (They look close on a map, but to NASA’s next rover, which, on a good day, might travel a couple hundred meters, they might as well be a million miles apart.) Jezero was once home to a river delta that every scientist I spoke with described as either beautiful, spectacular, or both---oh, and its minerals may once have supported microbial life. “To the extent that ancient lakes and deltas were habitable environments, and that we believe them to now preserve traces of ancient life, Jezero is absolutely the best choice among the remaining sites,” says John Mustard, a planetary geologist at Brown. (Mustard is the bridge between the two sites; he is a coauthor on Bramble’s Northeast Syrtis paper, but once served as Goudge’s thesis advisor---small world, no?)
Northeast Syrtis on the other hand, is more likely to provide NASA’s rover easy access to lots of geologic environments---something the new map of the region confirms. Of particular interest are the clay minerals in the bottommost geological layers, sulfate-bearing terrains in the uppermost strata, and carbonated olivine minerals in between---all of which hint at one-time habitable, aqueous environments. What’s more, they’re all readily accessible. “The regions of interest are more clustered in Northeast Syrtis,” Goudge says. That means NASA’s rover could conceivably start doing science there as soon as it lands, drilling and caching samples from a range of geologic periods in a relatively small window of time.
That clustering will almost certainly factor into NASA’s final decision. The agency’s Jet Propulsion Lab has already used the map to run thousands of potential landing and exploration scenarioses throughout the region. “You know, if you dropped the rover at this latitude and longitude where would it go, what route would it traverse, what obstacles would it have to avoid,” Mustard says. Goudge has produced similar maps of Jezero, though at slightly larger scales and lower resolution. He says he and his colleagues will be collecting more detailed imagery of the crater in the months ahead, which NASA will also use to model landing and traverse scenarioses.
NASA will choose a landing site for its rover in the next couple of years, based largely on the research and guidance of planetary geologists like Bramble, Mustard, and Goudge. Barring any surprises, it will very likely be one of the sites in Syrtis Major.
Which is pretty poetic, if you think about it. Christiaan Huygens surely knew, as he was drawing his rudimentary map more than three centuries ago, that future generations would go on to chart the surface of Mars and other planets in increasingly fine detail. He might even have guessed we’d seek them out in search of life. (Like many of his contemporaries, Huygens was a big believer in extraterrestrials.) But what he couldn't have known that November night was that more than 350 years later, astronomers would direct their attentions back to Syrtis Major---to the fringes of the dark mark he so carefully described for the first time.